MSPAI 1.2 — Modified SParse Approximate
Inverse Preconditioner

Thomas Huckle
Alexander Kallischko
Matous Sedlacek

2009 — 08 — 25

Technische Universitat Miinchen
Forschungs- und Lehreinheit Informatik V
Scientific Computing in Computer Science

Contents
1 Abstract

2 MSPAI 1.2 Usage
2.1 Imstallation e
2.2 How torun MSPAI 1.2
2.3 Options L
2.4 Parameter dependencies e

3 FAQ
3.1 What does MSPAI stand for?
3.2 Why does MSPALI taking forever to compute the preconditioner?
3.3 Does MSPATI always work?
3.4 When I reduce € the preconditioner does not really improve, why?
3.5 Caching does not improve the computation time, why?
3.6 Using probing always complains about dimension mismatch, why?
3.7 Which dimension do the system matrices may have?
3.8 Which input matrices MSPAI was tested with?

4 Links
4.1 Contacts e
4.2 Usedtools e
4.3 References o

1 Abstract

Given a sparse matrix A the SPAI preconditioner computes a sparse approximate inverse
matrix M by minimizing ||AM — I||r. The MSPAI algorithm is a generalization of SPAI,
an extension of SPAI with target form to

|CM = B (1)

This allows to compute explicit matrix approximations in either a factorized or unfactor-
ized form. Furthermore, this enables to add some possibly dense rows to the underlying
matrices, which are then also taken into account during the computation. These additional
constraints for the Frobenius norm minimization generalize the idea of classical probing
techniques, which are restricted to explicit approximations and very simple probing con-
straints. By a weighting factor, the resulting preconditioner can be forced to be optimal
on certain probing subspaces represented by the additional rows.

The algorithm proceeds until |[CM — Bll2 < €. By varying e the user may control
the quality and the cost of the preconditioner. A very sparse preconditioner is cheap to
compute, but may not lead to significant improvements, whereas M becomes too expensive
to compute if it becomes too dense.

The MSPAI preconditioner has various options to start several different algorithms such
as a caching algorithm or QR updates for a faster computation of M.

2 MSPAI 1.2 Usage

2.1 Installation

Unfortunately, there is no common configure script and no common installation package
at the moment. As soon as there will be any user-friendly installation process this will
be changed immediately. There is a stand-alone serial as well as parallel version of the
MSPAT 1.2 . For now, one has to decide which version to use, adapt the specific Makefile
and just type make in the src directory to start compiling the sourcecode.

2.2 How to run MSPAI 1.2

e Serial version:

./mspai-1.2 <matrix.mtx> <pattern.mtx |-1| -2> <targetmatrix.mtx | -1> [options]

e Parallel version:

mpirun -np <n> ./mspai-1.2 <matrix.mtx> <pattern.mtx |[-1| -2> <targetmatrix.mtx
| -1> [options]

The mandatory parameters are:

matrix.mtx

pattern.mtx |[-1] -2

targetmatrix.mtx |-1

The system matrix in Matriz Market [5] format.

Path to start pattern file in Matriz Market format or

-1 for generating a diagonal start pattern automatically
without any file or

-2 for generating a start pattern which prescribes the
pattern of C' itself for the preconditioner.
No file required in these two cases.

Path to target matrix file in Matrix Market format or
-1 for generating an identity matrix automatically without
file. This approximates the inverse C 1.

Number of processors to use in MPI environment for
parallel computation of M.

For getting help on shell use the -h option (e.g. ./mspai-1.2 -h).

2.3 Options

Optional parameters can be used after the mandatory input in any order, always
-optional parameter <number |path>.

Optional parameters are:

-h(elp)| Parameter descriptions to shell

-ep € tolerance
Default: 0.4

Choice: ep > 0.0

ep controls the quality of the approximation of M to the inverse of C'. Higher
values of ep lead to more computational work, more fill-in and usually to better
preconditioners.

Usage: ./mspai-1.2 -h(elp)
Default: Don’t display help
Print the MSPAI usage and optional paramaters to shell.

-wp

-up

Max. number of improvement steps per column

Default: 5

Choice: ns >0

Every column of the inverse C~! is approximated in several improvement steps
(pattern updates). The quality of the approximation is determined by €. If the
approximation could not reach the accuracy of e after ns steps, MSPAI will
use the best approximation so far.

Max. number of new nz candidates per step

Default: 5

Choice: mn > 0

For each improvement step there will be chosen mn new indices for the cur-
rent pattern to compute a better approximation in the next step. If no new
candidates can be found, the iteration aborts and the approximation will finish.

Hashtable size

Default: 6

Choice: hs € {0,1,2,3,4,5,6}

MSPALI uses a hashtable to cache remote messages and avoid redundant pro-
cess communication. It is recommended to use larger hashtables to avoid the
linear rehashing mechanism. -hs 0 forces to switch the hashtable off — no
communication will be cached locally.

-hs 0 Don’t use any hashtable.

-hs 1 Hashtable has size 101.

-hs 2 Hashtable has size 503.

-hs 3 Hashtable has size 2503.

-hs 4 Hashtable has size 12503.

-hs 5 Hashtable has size 62501.

-hs 6 Hashtable has size 104743.

This parameter is not available in serial version.

Write preconditioner to file

Default: 1 (true)

Choice: wp € {0,1}

Whether to write the computed preconditioner into a file or not. The precon-
ditioner will be written in Matriz Market format into the specified output file
within the current working directory. Default output file is precond.mtx.

Use upper pattern (maximum sparsity pattern)
Default: Don’t use upper pattern
Choice: —up <path> | 1 | 2

—-CS

-qr

This way it is possible to predefine where the preconditioner will have its nz

entries. Using this option in parallel MSPAI it is possible to prerequest all

remote data once at the beginning. See -pm and -pk.

-up 1 will generate a maximum identity pattern automatically without any
file.

-up 2 will generate a sparsity pattern for the preconditioner, which
prescribes the pattern of C itself. No file required.

Cache size

Default: 0 (don’t use cache)

Choice: 0 < cs < 1le7

MSPALI can be invoked with a caching algorithm to cache QR decompositions
and whole LS problems. Using the cache may reduce the computation time
significantly when C'is highly structured. It is recommended to use this option
with a larger cache size (e.g. 500) if C is structured. For highly structured
matrices smaller cache sizes (e.g. 50) may be sufficient. -cs 0 will switch the
caching algorithm off.

Use mean value

Default: 1 (true)

Choice: um € {0,1}

Whether to use a mean bound value for augmenting indices during an improve-
ment step or not. During each improvement step new nz candidates will be
computed for a better approximation. With this mean value the number of in-
dices will be reduced to get only few candidates with best improvement. Using
this recommended option will reduce the computation time.

Using QR levels

Default: 0 (Don’t use QR updates)

Choice: qr € {0,1,2,3,4,5}

It is possible to use a QR update algorithm for updating previously computed

QR decompositions. This is much faster than computing a new decomposition

for each LS problem. Optionally there are several QR levels to use:

—-qr 0 will switch the QR levels off. This will run a "normal” MSPAT mode.

-qr 1 will cause an automatic switch between dense and sparse decompositions
by means of the density of the submatrices C. See option ~f g for details.

-qr 2 will cause dense QR updates using LAPACK [4].

-qr 3 will cause sparse QR updates using CSparse [2] for sparse computation.

-gr 4 will cause hybrid QR updates using both the CSparse and LAPACK
library for updating the decompositions.

-qr 5 will run without updates, but with sparse QR decompositions using the
CSparse library. This option is useful for comparison without QR
updates using the LAPACK library (-qr 0).

_fg

-Ce

Density of submatrices C

Default: 0.3

Choice: 0.0 < £fg < 1.0

Using density for QR level option —-qr 1. Due to the density of each submatrix
C of a LS problem, it will be decided whether to use the LAPACK (density >
fg) or CSparse library (density < fg) for the current decomposition.

Prerequesting columns

Default: 0

Choice: pk >0

When using a maximum sparsity pattern (see —up), it is possible to prerequest
pk columns additionally to a requested column. This option makes only sense
when using the hashtable (-hs). The prerequested columns will be cached
and are locally available for further computations. It is recommended to use
small values (e.g. 5) when deciding for this option. Significant time improve-
ments usually occur only when all remote columns are prerequested once at
the beginning (-pm 1). This option is only usable in the parallel version.

Prerequesting columns only once at the beginning

Default: 0 (false)

Choice: pm € {0,1}

When using a maximum sparsity pattern, it is possible to prerequest pk
columns once at the beginning. This may speedup the calculation time be-
cause each process will prerequest all its columns at once at the beginning and
may work on local data afterwards. No remote communication will be done
after this single MPI traffic. When deciding for this option, it is recommended
to set pk to the number of columns of the system matrix C'. This option is
only usable in the parallel version.

Use probing vectors (probing matrix) for C

Default: Don’t use -Ce

Choice: -Ce <path>

If probing vectors are to be appended to the system matrix and thus generate
the generalized form C, a file in Matriz Market format containing the trans-
posed probing matrix has to be used. Ensure to have two probing files defined
(-Be and -Ce), containing transposed probing matrices, and that in case of
Schur probing the number of columns has to be smaller than of the system
matrix. See parameter dependencies Section 2.4 for details.

Use probing vectors (probing matrix) for target matrix B
Default: Don’t use -Be
Choice: -Be <path>

-rho

-schur

-ch

-out

If probing vectors are to be appended to the target matrix B and thus gen-
erate the generalized form B, a file in Matrix Market format containing the
transposed probing matrix has to be used. Ensure to have two probing files
defined (-Ce and -Be), containing transposed probing matrices, and that the
number of columns is equivalent to that of -Ce. See parameter dependencies
Section 2.4 for details.

Weight p for probing conditions

Default: 1.0

Choice: rho > 0.0

Weight for the probing conditions. p will be multiplied to each probing matrix
component internally before computing the preconditioner.

Use Schur probing

Default: 0 (false)

Choice: schur € {0,1}

Whether to use Schur probing or not. Ensure to use probing matrices -Ce and
-Be when Schur probing requested. See parameter dependencies Section 2.4
for details.

Use hashtable

Default: 0 (false)

Choice: ch € {0,1}

Whether to use a hashtable to cache QR decompositions and whole LS problems
or not. Using the hashtable may reduce the computation time significantly
when C is highly structured. Note that there is no upper bound for the size of
the hashtable. This option is useful for comparison with a fixed cache size -cs
and uses another hashtable than option -hs.

Specify output file

Default: precond.mtx

Choice: out be any string containing alphanumeric characters

Where to write the computed preconditioner. The preconditioner will be writ-
ten to a file named by the specified output string in the current working direc-
tory.

Usage examples:

e Starting serial MSPAI to compute the preconditioner for the matrix orsirr_2
[5]. Based on a diagonal start pattern the system matrix will be approximated
inversely. With an e tolerance of 1073 there will be a maximum of 15 improvement
steps, within each a maximum of 8 new candidates will be added to the current
pattern without using a mean value bound. With switched off Caching and QR
levels this is the unrestrained MSPAI algorithm without any runtime optimizations.
A maximum sparsity pattern is used to predefine where entries are allowed within
the preconditioner.

./mspai-1.2 /Matrices/orsirr_ 2.mtx -1 -1 -ep 0.001 -ns 15 -mn 8 -cs 0 -qr O
-up /Matrices/upperpattern.mtx -um O

e Starting parallel MSPAI on three processors to compute the preconditioner
for the matrix orsirr_2. Start pattern is the sparsity pattern of the system
matrix. With an e tolerance of 1072 and a maximum of 12 improvment steps,
within each a maximum of 5 new candidates using the mean value bound
will be added to the current pattern, the system matrix will be approximated
inversely. Using dense QR updates will significantly improve the computation time.

mpirun -np 3 optOl opt02 opt03 ./mspai-1.2 /Matrices/orsirr_2.mtx -2 -1 -ep
0.01 -ns 12 -mn 5 -cs 0 -qr 2

e Starting parallel MSPAI on five processors to compute the preconditioner for
the matrix orsirr_1 [5]. Based on a specific start pattern from file, the system
matrix will be approximated inversely. In a static MSPAI without any improvment
steps Schur probing is requested. There are two probing matrices passed, one for
C (-Ce) and one for B (-Be). The caching algorithm is requested with cache size 80.

mpirun -np 5 optOl opt02 opt03 opt04 opt05 ./mspai-1.2
/Matrices/orsirr_1.mtx /Matrices/startpattern.mtx -1 -ns 0 -cs 80 -qr 0
-Ce /Matrices/probingmatrixCe.mtx -Be /Matrices/probingmatrixBe.mtx -schur
1

2.4 Parameter dependencies

Several parameters are only usable when others are or are not used as well. In case of
incorrect use, an error message will be printed to shell. The following subsection should

give a short survey. Parameters which are not listed do not have any dependencies and

can be used arbitrary.

targetmatrix.mtx

-up

—-C8

-qr

—-schur

-ch

Only usable with: -ns 0, -qr 0
The target and system matrix must be square and must have the
same number of columns, if probing is not used.

Only usable with: -schur 0
Maximum sparsity pattern and start pattern must be square and
must have the same number of columns.

Only usable with: -qr 0, -ch 0

Only usable with: -cs 0, -ch 0, -ns > 1, -schur 0, target
matrix option -1
Not usable with: -Ce, -Be

Only usable with: -up <path> | 1 | 2, -schur 0
Only usable with: -up <path> | 1 | 2, -schur 0

Only usable with: -Be, -ns 0, -qr 0

The dimension of the probing matrices must be the same. If Schur
probing is not used, the number of columns of each probing matrix
must be equal to that of C.

Only usable with: -Ce, -ns 0, -qr O,

The dimension of the probing matrices must be the same. If Schur
probing is not used, the number of columns of each probing matrix
must be equal to that of C.

Only usable with: -Ce and -Be, target matrix option -1

In case of Schur probing the probing matrix -Ce must have less
columns than the system matrix C'. The zero block will be filled
automatically in front of -Ce. Furthermore a valid start pattern
file must be passed. The options -1 and -2 for start patterns are
not usable with Schur probing. The start pattern must have as
many rows as the system matrix and as many columns as -Ce.
The probing matrix -Be must have the same dimensions as -Ce.
The identity and zero block for the target matrix will be generated
automatically.

Only usable with: -qr 0, -cs 0

3 FAQ

3.1 What does MSPAI stand for?

MSPAT stands for Modified SParse Approximate Inverse. The name Modified SPAT is an
extension to the original name SPAI. ” The name was invented some time in the Spring of
1994 during a typical lunch outside on the beautiful lawn of the Main Quad at Stanford
University: an improvised ”dejeuner sur I’herbe” amongst Rodin sculptures below sunny
Californian skies. Present were T. Huckle (TU-Munich), M. Grote and A.-J. van der Veen
(TU-Delft).” [3]

3.2 Why does MSPAI taking forever to compute the preconditioner?

Make sure your e value is not too small. You could start with a larger value (e.g. 0.3) and
reduce it progressively until total execution time starts to increase again.

3.3 Does MSPAI always work?

In principle, yes. Unlike many other preconditioners, MSPAI cannot break down if the
matrix C' is non-singular. Moreover, if one keeps reducing ¢, MSPAI will eventually com-
pute the exact inverse C~!. This may take a very long time. Of course there are several
restrictions in using the MSPAT options. See Section 2.4 for details.

3.4 When | reduce ¢ the preconditioner does not really improve, why?

Try to increase the number of improvement steps -ns and/or the number of indices to be
added during one step -mn.

3.5 Caching does not improve the computation time, why?

It is advised to use the caching algorithm only when the system matrix C is structured
(band, block, etc...). Try to make the cache larger (e.g. 500) when C'is supposed to have
many different submatrices C'. Otherwise a small cache of size 50 should be sufficient.

3.6 Using probing always complains about dimension mismatch, why?

See Section 2.4 for details. Probing is only supported in static MSPAI yet (-ns 0). When
using explicit or inverse probing, the dimensions of the probing matrices -Ce and -Be must
have the same number of columns as C. In case of using Schur probing (-schur 1), these
matrices must have less number of columns than C. Furthermore, a start pattern file has
to be passed as well.

3.7 Which dimension do the system matrices may have?

There is no restriction to the number of columns and rows B and C must have. MSPAI
1.2 was tested with lots of matrices with different dimensions and densities. The largest

10

matrices had approximately 10° columns and rows. Note that the system matrices must
be square.

3.8 Which input matrices MSPAI was tested with?

Besides matrices (CFD, Laplace) generated on our own, MSPAT was tested for various ma-
trices from Matrix Market [5] and from the University of Florida Sparse Matrix Collection
[7].

4 Links

4.1 Contacts

e Thomas Huckle
Department of Computer Science - Chair V
Technische Universitdt Miinchen
Boltzmannstr. 3
85748 Garching bei Miinchen
Germany
a +49-(0)89/289 18 609
FAX +49-(0)89/289 18 607
= huckle@informatik.tu-muenchen.de
www http://wwwb5.in.tum.de/wiki/index.php/Univ.-Prof._Dr._Thomas_Huckle

e Matous Sedlacek
Department of Computer Science - Chair V
Technische Universitdt Miinchen
Boltzmannstr. 3
85748 Garching bei Miinchen
Germany

a +49-(0)89/289 18 613

Xl +49-(0)89/289 18 607

= sedlacek@in.tum.de

www http://wwwb5.in.tum.de/wiki/index.php/Matous_Sedlacek

4.2 Used tools

The MSPAI 1.2 implementation uses:
e BLAS: Basic Linear Algebra subroutines [1].

e LAPACK: Linear Algebra Package [4].
e CSparse: Concise Sparse Matrix package [2].

e MPI: Message Passing Interface for the parallel version [6].

11

http://www5.in.tum.de/wiki/index.php/Univ.-Prof._Dr._Thomas_Huckle
http://www5.in.tum.de/wiki/index.php/Matous_Sedlacek

4.3 References

References

1]

2]

12

ATLAS - AUTOMATICALLY TUNED LINEAR ALGEBRA SOFTWARE. http://
math-atlas.sourceforge.net/.

CSPARSE - CONCISE SPARSE PACKAGE. http://www.cise.ufl.edu/research/
sparse/CSparse/.

M. GROTE AND O. BROEKER, SPAI - SParse Approzimate Inverse Preconditioner,
Spaidoc.pdf paper in the SPAI 3.2 package, 2005.

LAPACK - LINEAR ALGEBRA PACKAGE. http://www.netlib.org/lapack/
index.html.

MATRIX MARKET. http://math.nist.gov/MatrixMarket/.
MPI - MESSAGE PASSING INTERFACE. http://www-unix.mcs.anl.gov/mpi/.

THE UNIVERSITY OF FLORIDA SPARSE MATRIX COLLECTION. http://www.cise.
ufl.edu/research/sparse/matrices/.

http://math-atlas.sourceforge.net/
http://math-atlas.sourceforge.net/
http://www.cise.ufl.edu/research/sparse/CSparse/
http://www.cise.ufl.edu/research/sparse/CSparse/
http://www.netlib.org/lapack/index.html
http://www.netlib.org/lapack/index.html
http://math.nist.gov/MatrixMarket/
http://www-unix.mcs.anl.gov/mpi/
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

	Abstract
	MSPAI 1.2 Usage
	Installation
	How to run MSPAI 1.2
	Options
	Parameter dependencies

	FAQ
	What does MSPAI stand for?
	Why does MSPAI taking forever to compute the preconditioner?
	Does MSPAI always work?
	When I reduce the preconditioner does not really improve, why?
	Caching does not improve the computation time, why?
	Using probing always complains about dimension mismatch, why?
	Which dimension do the system matrices may have?
	Which input matrices MSPAI was tested with?

	Links
	Contacts
	Used tools
	References

